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1 Introduction

Underlying the basic process of many studies, such as those tracking the progression of Melanoma
[7], is the need to identify the factors that affect the transcriptional activity of a gene. Consequently,
an increasingly important tool to highlight these factors and study human gene regulation in general
is chromatin state annotation. However, existing tools that perform these annotations are sometimes
inaccurate, inefficient and hard to generalize.

Traditional Machine Learning methods can be categorized into two types: discriminative and gener-
ative learning models. As with this task, many problems in computational biology are tackled using
the second category. These models, while useful because of our ability to obtain an uncertainty in
predictions, are difficult to design and generalize because of the explicit probabilistic assumptions
that must be made, which may be complicated or change from task to task.

Thus, for this project, I explore the effectiveness of using a particular class of discriminative models
known as Convolutional Neural Networks as an alternative method of chromatin state annotation.
The use of CNNs for many computer vision tasks has demonstrated it’s propensity to effectively in-
corporate spatial context, which, given that the state of any genomic bin is not independent of nearby
bins, is particularly useful for this task. In this paper, I propose two models that assign chromatin
states to the bins present in an input genomic sequence. While my goal is to demonstrate that CNNs
can accurately annotate a sequence, I place a particular emphasis on interpreting the features it uses.

2 Background

2.1 Chromatin State Annotation

Sequences of approximately 150 base pairs in the DNA are curled around a center of an eight-protein
complex, known as the histone octamer. Each structure and any of its associated proteins is called the
Chromatin[I]. These structures enable the attachment of various structural and regulatory proteins
and thus, its composition allows us to determine the transcriptional activity of a gene.

The histone proteins contained at the center often undergo various modifications, changing the inter-
action of this gene with different proteins. Thus, certain combinations of modifications could, among
other effects, make regions more likely to initiate the transcription of a protein or encourage the bind-
ing of transcription factors that suppress the expression of a gene. Since the 2000s, scientists have
discovered over a hundred chromatin modifications (combination of histone modifications) and have



attempted to group them together into a discrete set of states[2], describing whether a region is an
Active Promoter or a Weak Transcriber, for example.

Thus, researchers attempt to annotate each 200 base pair interval in a DNA sequence with one of these
states. They do so by looking at the location of the region in the genome and various epigenomic
marks associated with it, such as the presence or absence of certain histone modifications. While
there continues to be ongoing debate on how many chromatin states should be defined, tagging each
region with the role they play during transcriptional activity helps scientists understand the relation
between regions of the DNA and protein expression and disease control.

2.2 Image Segmentation & Convolutional Neural Networks

Image segmentation is the problem of partitioning an image into discrete, meaningful segments. The
motivation for doing so is that representing an image as human-interpretable regions as opposed to
pixels allows for greater reasoning about the content of the image. Most approaches tackle this prob-
lem by tagging each pixel as belonging to one of K classes. Pixels belonging to one class make up a
single segment in the image (though not necessarily one object).

Over the last decade, Convolutional Neural Networks (CNNs) have found wide use in the Computer
Vision community to tackle problems like image classification, object detection and image segmenta-
tion. At a high level, each CNN can be thought of having a set number of layers. Each layer takes
as input a feature map, performs a single operation (Figure 1) on the pixels of this map and outputs
the result of this operation as another feature map. Each feature map can be thought of as some
intermediate representation of the initial image, with altered height, width and number of channels.
For the purposes of segmentation, the output of this network is a feature map of the same dimensions
as the input where instead of an RGB value, each pixel simply holds the class it belongs to.

9.1 3 -1 [[N7i1032 20f50 1 3 1
kemet>| 4 | 2 | 1 \\ |
Niio 32 [ 1 3 [0

Figure 1: Left to Right: (1) 1D Convolution: We calculate the 1 in the final cell of output map as
follows: (1 *3) + (2 *-1) + (4 * 0) = 1. The weights of the kernel are learned during the
training process. (2) Max-Pooling: We slide a 2 x 1 window over the input and place the
maximum value of all values in this window in the output map. (3) ReLU: Each cell of the
input is either preserved if positive or set to 0 if negative.

3 Existing Methods

One of the first and most effective methods for chromatin state annotation is ChromHMM [3]. The
model uses a multivariate Hidden Markov Model, wherein each state corresponds to a chromatin
state and the emission distribution is a product of independent Bernoulli random variables, each cor-



responding to the presence of a single histone modification. However, the authors of [3] do note a
number of drawbacks. In particular, the learning process takes approximately a day and some bio-
logical assumptions may be needed for the underlying emission distribution. ChromHMM’s accuracy
on the validation data we describe in section 4.1 is 0.897.

4 Proposed Methods

4.1 Dataset

For the experiments below, I use sample data of chromosome 11 drawn from a Erythrocytic Leukaemia
(K552) cell line that is available with the ChromHMM package [3]. For each 200 base pair region
(bin) in the sequence, the dataset labels the ground truth chromatin state (from a total of 10 possible
states) and notes the absence of presence of 9 genetic modifications. Importantly, the use of 10 states
differs slightly from the conventional 15 states used to segment a genetic sequence. However, as the
authors of [3] point out, the final 5 states appear too infrequently in the sample data and thus, are
currently ignored.

e Modifications: CTCF, H3K27ac, H3K27me3, H3K36me3, H3K4mel, H3K4me2, H3K4me3,
H3K9ac and H4K20mel.

e States: Active Promoter (0), Weak Promoter (1), Poised Promoter (2), Strong Enhancer-1 (3),
Strong Enhancer -2 (4), Weak Enhancer (5), Poised Enhancer (6), Insulator (7), Transcriptional
Elongation (8), Transcriptional Transition (9).

Because CNNs can’t receive data of arbitrary length, we split the entire genome into 16 bin sections,
each corresponding to a single image. The consequences of doing so are briefly explored in section 6.3.
To encode the available genetic information into the image, we convert the modifications at each bin
into a 9-dimensional vector of Os and 1s, with each denoting the absence or presence respectively of a
particular modification. Thus, we have created images with dimensions 1 x 16 x 9. We represent the
intended output at each bin as a 1-dimensional vector of the state assigned to it. Finally, the dataset
is split into 33613 training images, 4203 validation images and 4201 test images.

4.2 Network Architectures
4.2.1 Segmentation Net

To create this network, I use an idea proposed in [4], which consists of two sections, an encoder
followed by a decoder:

e Encoder: This section is responsible for creating a compact representation of the input se-
quence. It consists of 3 modules. At each module, the incoming feature map from the previous
stage undergoes a 1D Convolution, a ReLU and a 1D Max-Pooling operation with a kernel size
of 2. Each 1D convolution layer uses twice the number of filters of the stage before it, with
the first module using 32 filters. Consequently, we see that after each module, the number of
channels in the feature map doubles, whereas the width of the feature map halves.

e Decoder: This section is responsible for translating a feature description of the input sequence
(generated by the encoder) into pixel-wise annotations. As with the Encoder, this sections also
consists of 3 models. At each, the incoming feature map is upsampled by a factor of two and
undergoes a 1D convolution.

e Base-Wise Classification: At the final layer, we perform 1D convolution with exactly 10
kernels. Convolution with each kernel produces a single channel in the output feature map,



denoting a score for each pixel. We then use the softmax function across channels in this output
to generate a probability distribution over classes for each pixel. The class with the highest
probability is then assigned to that pixel.

4.2.2 U-Net

This architecture is identical to the one proposed above, with a single modification [5]. The network
uses skip connections, where we take a feature map from an early layer and append it to the input
feature map of some following layer, completely bypassing any layers in between. In this case, we
use three skip connections. The first takes the output feature maps of the first encoder module and
appends it to the input feature maps of the final module in the decoder. We do the same with the
second encoder module and the second-to-last decoder module and the third encoder module and the
third-to-last decoder module.
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Figure 2: Network diagrams for (a) SegNet and (b) U-Net with arrows denoting the skip connections.

4.3 Training

Both networks were created using Keras, with a Tensorflow backend. A batch size of 32 and the
default Adam optimizer were used during training, with the network being evaluated on a held-out
validation set after each epoch, for a total of 30 epochs.

The networks aim to minimize the following cross-entropy loss:
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where n is the number of bins (pixels) in the input, y; . is 1 if the ground truth class for bin i is ¢ and
0 otherwise and p; . is the predicted probability that bin i belongs to class c.

5 Results

Figure 3 allows us to make a few observations. To begin with, regardless of the kernel size, U-Net’s
validation loss is consistently lower than that of the corresponding SegNet model. Thus, the skip-
connections clearly are helpful and we explore reasons for this in Section 6.2. We also notice a very
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Figure 3: Validation Loss vs. Training Epochs for both architectures using 3 different kernel sizes.

Table 1: The maximum validation accuracy of various models
Model SegNet U-Net

Kernel Size 2 3 5 2 3 )
Max. Accuracy 0.891 0.904 0.899 0.901 0.927 0.915

rapid drop in the loss in the first few epochs. This suggests that there are certain patterns in the data
that can be captured fairly easily. However, that the loss doesn’t continue dropping further, suggests
that there are aspects of the problem that these CNN architectures are not expressive enough to
handle and require more complex networks.

Table 1 demonstrates the effect of using different kernel sizes. Interestingly, the effects of differ-
ent kernel sizes is more pronounced in U-Net, suggesting that in more complex architectures, the
choice of kernel sizes is non-trivial. The optimal kernel size is 3 and increasing the kernel size does
cause a drop in performance, suggesting that the network is unable to effectively put the additional
information provided to use.

Finally, in all the graphs, we notice that the loss tends to reach a minimum and then gradually
increases as the model is trained for more epochs. While not plotted, the training loss continued to
decrease at this point. This suggests that the architectures begin to learn artifacts that are specific
to the training set and don’t apply in general, leading to a higher validation loss after a few epochs.



The rise in validation loss occurs more quickly in models that use a initial kernel size of 5 which is
reasonable since these models have more parameters than the other two.

6 Discussion

For the experiments below, I used versions of the SegNet and U-Net models of kernel size 3 whose
weights provided the maximum validation accuracy over the 30 training epochs.

6.1 Chromatin State Confusion

Normalized Confusion Matrix - SegNet Predictions Normalized Confusion Matrix - UNet Predictions
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Figure 4: Normalized confusion matrices for predictions made by SegNet and U-Net with an initial
kernel size of 3 on the test set.

In Figure 4, for both models, we see that classes 1, 5 and 8 have the highest recall, among all
classes. This suggests that the network is capable of distinguishing between the three main classes of
chromatin states: promoters, enhancers and transcriptional states, since each corresponds to exactly
one of these states. However, at the same time, we note that the recall within these main categories
can be improved. Take classes 0, 1 and 2, which correspond to Active, Weak and Poised Promoters.
For both Active and Poised promoters, both models are marginally more likely to label bins as Weak
Promoters than their true label. Thus, since the pattern of histone modifications for bins with these
labels is similar, the model finds it slightly difficult to distinguish between them and favours annotat-
ing any bin displaying these patterns as a Weak Promoter.

Finally, the most intriguing result from Figure 4 is the markedly poor performance for class 9, Tran-
scriptional Transition, where most bins are annotated as belong to class 8, Transcriptional Elongation.
The above point only partially explains this effect. The more compelling reason is there is an imbalance
between the number of examples available for class 8 and 9, with 10 times more bins corresponding
to the former. Thus, given the similarity in the histone modification patterns for these examples, the
best way for the network to minimize our loss function would be to focus on correctly differentiating
all the other classes and simply annotating all examples belonging to classes 8 and 9 as the former.



6.2 Impact of Using Skip Connections

As seen from the validation accuracies and confusion matrices, skip connections (in U-Net) improve
our segmentations. One potential reason for this improvement is that these connections provide more
'fine-grained’ predictions. Take the Strong Enhancer-2 state (class 4). This state seems to occur in
very short stints across the genome [3], making it more susceptible to being mislabeled by coarse
segmentations. As Figure 4 indicates, U-Net performs slightly better at annotating this class than
SegNet, validating the idea that it’s segmentation is more fine-grained. This property can also be
visualized in Figure 5, where U-Net retains the sole class 4 and 7 labels whereas SegNet does not and
instead expands the class 6 segmentation.

Ground Truth Segmentation

8(8/8|8(4(8/8/8[8[8|616(88|8
[8[8[8]8]8[8[8[8]8[8[SIEleleI8[8][7]8[8]8]8[4[8[8[8[8[8 8(8/8

SegNet Prediction U-Net Prediction

Figure 5: Sample predictions by the two models indicating the coarseness of their segmentations

6.3 Occlusions

An effective way to interpret the cues used by the CNN to perform any classification is to occlude
part of the input and observe the results [6]. For this problem, I sample a DNA sequence from the
held-out test set that contains a bin with ground truth class 8 at its center and atleast one histone
mark at each bin (called region in Figure 6). I then iteratively occlude a single bin, by indicating the
absence of all histone marks. At each iteration, I observe the change in the predicted probability of
the same center bin belonging to class 8 against the same sample with no occlusion.

Heatmap of Change in Predicted Probability Due to Occlusion Heatmap of Change in Predicted Probability Due to Occlusion
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Figure 6: The results of occluding DNA fragment regions (bins) in two different data samples. The
heatmap value at each index i indicates the change in the predicted probability of class 8
at index 9 if bin i was occluded. Ground truth classes are provided for reference in the
final row. When passed through the network, the un-occluded samples yield the ground
truth result. NNote: The heatmap value at index 9 provides no information because it’s
probabilities are the ones being observed.

That we achieve high precision and recall in segmenting regions of this class allows us to be con-
fident of the following conclusions. In (a), we see that as we consider regions further behind the



region of interest, the effect on the latter’s probability distribution slowly tapers off but is nonetheless
significant. Thus, we see that one of the reasons using a CNN is effective is because it takes into
account a large context window. In (b), we see that altering the regions immediately preceding bin
9 has virtually no impact on the probability predicted by the CNN. In conjunction with (a), this
suggests that the CNN doesn’t just rely on a larger window of bins but also uses global features in
making predictions.

Finally, these observations also underline one of the flaws of using a CNN. In (a), we see that occluding
the first region affects the probability significantly. Because the four regions after that have no effect
on the probability, we can conclude that this is because this was where the DNA segment was split
to pass into the CNN as opposed to any real semantic relation to region 9. Thus, this suggests that
splitting the DNA sequence does affect the probabilities predicted at regions that seem to be ’far’
away from the split. Any extension would naturally have to remedy this.

6.4 Transfer Learning

In practice, researchers are unlikely to have access to as much labeled data for one particular genome
as we did for this project. Thus, a crucial criterion for using these architectures would be their ability
to adapt to annotating new cell lines, with minimal additional data. Thus, for this experiment we
take our U-Net architecture, pretrained on the K562 cell line and allow for additional training on 100
training examples for the annotation of chomrosome 11 of the B-Lymphocyte (GM12878) cell line.
We then test this new network’s ability to annotate unseen examples from the GM12878 cell line.

Training Process Without Additional Data With 100 Additional Examples
Test Accuracy 0.876 0.935

Table 2: Test accuracy on the GM12878 cell line with and without finetuning

As seen from Table 2, the model can easily be applied to other datasets. The slight drop in test
accuracy if the model is not fine-tuned is indicative of the fact that there are patterns that apply
across cell lines and those that are specific to each. Furthermore, that we get a 0.6 increase in
accuracy with little additional data demonstrates the model’s flexibility and readiness for real use.

7 Conclusion

In summary, we show that using Convolutional Neural Networks provides a marginal improvement
over ChromHMM in annotating chromatin states. In particular, these networks make effective use of
both local and global cues in DNA segments to perform such annotations. We find that the use of
skip connections to provides more fine-grained annotations and that such pre-trained networks can
easily be applied to other datasets. Thus, we have created a tool that allows researchers to effectively,
with limited data, annotate chromatin states.

However, despite these benefits, there are certain improvements that could be explored. In par-

ticular, ways to remedy the length restriction we impose on the DNA segments and methods to
improve annotation accuracy of similar categories would be interesting experiments to try.

8 Source Code

Code used to prepare training data, define, train and analyze models is available here.


https://github.com/garnav/Chromatin-Semantic-Segmentation
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