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Abstract

Detecting and localizing image manipulation is a task
made ever more relevant in the age of effective, accessi-
ble manipulation technology. We propose two pairwise re-
gion comparison methods that improve the copy-move de-
tection performance of an existing two-stream Faster R-
CNN forgery detector. One comparison method employs
Siamese networks whereas the other uses CNNs that oper-
ate on concatenated representations of two regions. Exper-
iments on our synthetic and standard datasets show that the
latter, when used with Rols from the two-stream network,
markedly improves copy-move detection performance. This
paper is limited due to computational constraints but our
methods can be easily replicated.

1. Introduction

Image manipulation is an art that has steadily improved
over the years. As the ability to construct misleading syn-
thetic images improves, the ability for the general public to
recognize well-manipulated images diminishes. From legal
cases, where images are used as evidence, to news stories,
where fake images are on the rise, detecting forms of ma-
nipulation would have a positive impact on society. For a
truly effective detection system, a simple binary label de-
noting forgery is not enough, we would need to localize the
region that has been tampered.

For this project, we refer to the three categories of image
manipulation: (i) splicing, where a region is copied from
one image and pasted onto another, (ii) copy-move, where
the region is pasted in the same image and (iii) removal,
where regions are erased and filled in with features consis-
tent with the image.

In this paper, we aim to improve the ability of state-of-
the-art methods to localize copy-move forgeries. We intend
to show that comparing image regions as is the approach of
traditional, non deep-learning approaches can be effectively
applied to CNN-based approaches that produce good task-
specific features. Finally, we evaluate the factors that make
some comparison methods more effective than others.
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2. Related Work

Existing work in image manipulation detection often re-
lies on statistical analysis of image pixel value histograms
such as in [[10]]. For copy-move detection, most approaches
first define feature vectors from image blocks or keypoints,
using techniques like Discrete Cosine Transforms, and then
match these to identify original-tampered pairs [7]. How-
ever, these feature representations are often ill-suited for the
task, because blocks fail to effectively localize the tampered
region or the region itself lacks notable keypoints.

The state-of-the-art on most datasets, however, uses a
two-stream Faster R-CNN approach introduced in [3] by
Zhou et al. Briefly, the RGB-N first uses SRM filters to pro-
duce maps of noise patterns in the image, which are passed
through a CNN. Simultaneously, the original RGB image
is passed through a Faster-RCNN, with the noise represen-
tations concatenated to the feature maps before Rol pool-
ing. The concatenated Rols are then used to decide if the
corresponding region is tampered while only the RGB Rol
features are used for bounding box regression.

While this network detects all forms of forgery, we note
that the noise and RGB streams are not as effective for copy-
move detection. In particular, copied regions often share
similar noise profiles as the region in which they’re pasted
and tampering artifacts are easier to hide in they same im-
age. The network could, however, benefit from a technique
used by previous methods: comparing regions to each other.

3. Proposed Methods

Given that the original copy of any copy-move tampered
region is present within the same image, we seek to compare
different regions and identify an original-tampered pair. In-
stead of representing regions via crops of the image, we
choose to represent it with the Rols RGB-N produces be-
cause these are well suited for detecting tampered objects.
Each of the models described in this section performs a
pairwise comparison of these features, assigning a score to
each pair. Scores satisfying a threshold, chosen as a hyper-
parameter, are assumed to be copy-move forgeries. From a
chosen pair, we choose the region with the higher RPN rank



as the tampered region and use the corresponding bounding
box predicted by RGB-N to identify the tampered region
in the image. By elimination, the other region in the pair
corresponds to the original copy.

As far as we are aware, no attempts have been made to
improve or augment the RGB-N architecture. Furthermore,
while deep learning approaches to image forgery detection
exist, those that compare image patches focus on copy-
move detection in the limited domain of biological or sci-
entific images [4] or focus only on identifying regions that
have been post-processed with operations such as Gaussian
blurring [1]. Finally, current approaches have not applied
the two-channel network [[11] to copy-move detection.

3.1. Baseline

Clearly, the approach used in [3]] leads to Rols that cap-
ture important semantic information about forged regions.
Consequently, it is reasonable to assume that feature maps
corresponding to tampered and original regions are already
sufficiently similar and require no additional transforma-
tions before comparison. To test this hypothesis, we use Co-
sine Similarity on pairs of flattened feature maps and iden-
tify the pair with the smallest absolute score as the original-
tampered pair.

3.2. Siamese Network

Siamese networks consist of two, weight-sharing convo-
lutional branches. Each branch takes as input a distinct Rol
and is followed by a fully connected layer that outputs a de-
scriptor of the corresponding input. While various ways to
compare these descriptors exist, for this paper we follow the
approach in [[6] and use their /5 distance as a representation
of their similarity.

We modify the network suggested in [6] slightly to ac-
count for the smaller height, width and higher number of
channels of the 7x7x1024 Rols. In particular, we still have
three modules, each with a convolutional, ReLU and max-
pooling operation but with convolutional kernel sizes of 3, 2
and 1 respectively. We arrived at these sizes experimentally
using a subset of the synthetic dataset described in section
4.1. Our fully connected layer has 512 units. Finally, due
to computational constraints, we assume that a subset of the
RoI’s channels is sufficient to distinguish the features and
as such use only the first 5 of the 1024 channels as inputs to
a siamese branch.

Defining the two input Rols as z; and x5, the [ distance
between their descriptors as Dyy, y as 1 if the two corre-
spond to an original-tampered pair and O otherwise and a
margin m > 0, we use contrastive loss [6] to train the above
network:

1;3/(

Ls(W,y,x1,22) = %(Dw)2+ maz(0,m — D,,))?
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Using this loss function forces the network to embed the
Rols of the two copies close together and separate unrelated
Rols by larger distances. In doing so, the network implicitly
learns the similarities between the two Rols, allowing it to
identify these pairs.

3.3. Joint Comparison Network

Following an approach used in [11], we create a CNN
followed by a decision network that takes as input two Rols
and concatenates them before operating on them. For an
effective comparison, the CNN’s structure exactly matches
the single siamese branch described in section 3.2. The fully
connected decision network consists of a hidden layer of
512 units and 1 output, with sigmoid activation.

Defining y as in section 3.2 and p as the network’s out-
put, we use binary cross-entropy loss to train the above net-
work:

Ljc = —(ylog(p) + (1 — y)log(1 — p))

This approach views the problem from a different per-
spective. Instead of learning an implicit similarity func-
tion, operating on the two Rols together affords the network
the opportunity to learn the explicit differences between the
pair. In doing so, it should learn to identify the original-
tampered pair by discounting aspects of their Rols.

4. Implementation
4.1. Datasets

We evaluate our models on the COVER [2] and CA-
SIA [3]] datasets, along with with our own synthetic dataset,
which was used to alleviate concerns of the limited exam-
ples and ground truth bounding boxes of the original copied
region in the former two. To create this dataset, we use
a process similar to [3]], where we use segmentation anno-
tations to randomly select objects from COCO and paste
them onto the same image (copy-move) or another image
(splicing). Due to computational constraints, our synthetic
dataset was created using objects from five categories: kite,
dog, sports ball, handbag and bottle. These were chosen to
represent the forgery of items in various contexts and of dif-
ferent sizes. Unlike [5], we did not have access to a dataset
of removal forgeries.

Copy-Move Splicing
Synthetic COVER CASIA | Synthetic CASIA
Train 7600 75 2946 7600 1664
Test 1900 25 328 1900 185
Table 1. Training and testing split on the three datasets.

4.2. Training

We train RGB-N on copy-move and spliced images from
the synthetic dataset for 20 epochs. Next, we store the Rols



produced for copy-move examples. For each such image,
we identify Rols corresponding to regions with maximum
IoU with the ground truth original and tampered regions.
This is the original-tampered pair and all other pairs are
untampered examples. Alternatively sampling positive and
negative pairs from this set, we train our models for 10
epochs. We fine-tune our models on the other datasets using
the same steps but with 5 and 3 epochs respectively.

5. Experiments

Lastly, all models see a drop in performance on COVER.
Without further experiments, we hypothesize that this could
be a result of the limited data available for fine tuning or
the singular nature of copy-moves in all examples. Specif-
ically, all authentic examples feature two instances of an
object and the tampered set is created by copying one over
the other.

5.2. Category Specific Copy-Moves

5.1. Overall Results
) ) o Kites Dogs Sports Ball Handbag Bottle
_‘}ive usedp”‘?l'wilse Fl to T‘.’aluate o mftho‘}ils,’ inline Siamese 0.153 0217 0.097 0.100 _ 0.134
with [S]] and using the protocol in [8] to calculate this score. iC 0567 0519 0.287 0.297 0.314

Synthetic COVER CASIA
RGB-N [5] 0.120 0.082 0.101
Baseline 0.096 0.100 0.112
Siamese 0.143 0.062 0.099
Joint Comparison (JC) 0.338 0.212 0.287
RGB-N + JC 0.362 0.232 0.310

Table 2. F1 scores on three datasets. For Synthetic and CASIA,
we limited the above evaluation to copy-move forgeries only.

Table 2 compares the F1 scores of RGB-N and our mod-
els. We replicate the evaluation protocol for RGB-N instead
of reporting literature results because of the different train-
ing protocol used. Interestingly, each of the models alone
performs better than RGB-N. However, we attribute this re-
sult to the low examples and time allotted to training this
network, compared to [5]. However, because all our meth-
ods use the Rols produced by RGB-N, we can still evaluate
their relative performance.

The poor performance of the baseline suggests that the
Rols for the original-tampered pair are sufficiently differen-
tiated, validating the need to test other methods. The con-
trast between the performances of the siamese and JC net-
works suggests that embedding Rols individually into some
feature space is insufficient and the flexibility of pairwise
Rol comparison is crucial. The models’ performance on
CASIA highlights this point. JC’s relatively more stable
scores suggest that this method applies generally whereas
the siamese embeddings are unable to abstract away the in-
put image type, atleast without more training.

For RGB-N + JC, if both models assign different bound-
ing boxes, we suppress that with the lower score. Other-
wise, we choose the bounding box of the model that makes
a prediction. This combination provides the best results.
However, we expect a larger jump in performance compared
to only JC. That this is not seen could be because of an over-
lap in JC and RGB-N predictions or that incorrect RGB-N
bounding boxes are assigned higher scores. The latter could
be remedied by using a different way to combine the two.
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Table 3. Category-wise F1 scores on copy-move forgeries in the
synthetic dataset.

Table 3 focuses on the models’ performance on spe-
cific types of copy-moved regions and allows us to qualify
the generalizability of the JC method. Specifically, there
are factors that make some comparisons easier than others.
Qualitatively, we observe that kites and dogs occur as much
larger tampered regions in the dataset, suggesting that the
network is better at detecting such regions, given its much
higher scores on these categories. Furthermore, we observe
that handbags and bottles appear in more cluttered contexts
than sports balls but this fact doesn’t seem to affect the net-
work’s performance, suggesting that the context in which
the copies appear is less relevant to the detection. These
conclusions don’t hold for the siamese network given its
generally poor performance on all categories. Further ex-
periments will be required to validate these observations.

5.3. Visualizing Comparisons by JC

s x i g

(@) (b)

Figure 1. Sample partial filters from the first convolutional layer of
JC. (a) and (b) are two different kernels. The left samples of (a),
(b) show the first 3 layers of the kernel, whereas the right show the
6th to 8th layers.

Figure 1 displays partial filters used by the JC network.
Similar to [[11], we observe that some kernels (1a) are sub-
tracting regions of one Rol from the other since the left and
right visualizations are roughly negatives of each other. Im-
portantly, this is not true for all the kernels, with 1b suggest-
ing a more complicated method of differentiating the Rols.
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Figure 2. Recall vs. Threshold for the two models on copy-move
forgeries in the synthetic dataset.

5.4. Analyzing Our Models’ Predictions

Taking inspiration from [9]], we calculate the recall at
various thresholds in Figure 2. For each image, if the
ground truth original-tampered pair’s predicted distance is
less than (siamese) or probability is greater than (JC) the
threshold, we adjudge the prediction as correct. That we see
arapid increase in recall from O to 1 between the 0.4 and 0.8
distance mark shows us that most of the ground truth predic-
tions by the siamese network are contained in this interval.
This validates the idea that the network’s poor performance
is because of its inability to learn the similarities between
the original-tampered Rols.

Siamese JC Ground Truth

0.227 (0.279) 0.036 (0.117)  0.021 (0.082)
Table 4. Mean (and Std.) IoU of predicted and ground truth pairs.

We attempt to gain some insight into why it has difficulty
doing so by examining the IoU of the pairs it identifies as
being forged. From the high mean IoU in Table 4, we can
conclude that the network is unable to effectively separate
close, but un-tampered regions and instead only manages to
perform a form of duplicate region detection. Coupled with
the previous observation, this suggests that the network is
unable to account for the different contexts in which the
copies may appear.

5.5. Improving the Siamese Network

Results from the previous section motivate us to alter the
process of sampling negative examples during training, to
give the network a broader view of un-tampered pairs. We
train the network on 15,200 Rol pairs produced from copy-
move images in the synthetic dataset with a positive - nega-
tive sample ratio of 1 to 4. The 4 negative samples are cho-
sen by pairing the original and tampered region each with
a region that marginally overlaps with it and a region that
doesn’t overlap with it at all. Table 5 compares this ap-
proach to choosing 4 random negative pairs.

We see a drop in performance when choosing 4 random
negative samples because of the imbalance in the number
of examples from each class. Interestingly, however, not
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1:2 1:4(random) 1 :4 (constructed)
0.143 0.110 0.149

Table 5. F1 scores on copy-move forgeries in the synthetic dataset
using the siamese network trained with various sampling methods.

only does the performance improve when these examples
are carefully chosen, it marginally outperforms our original
network. This suggests that the problem of learning a sim-
ilarity function is not as intractable as we earlier believed
and that with enough data and the correct training protocol,
the network could be effective.

5.6. Effect on Other Types of Forgeries

RGB-N was designed to detect all 3 types of forgery.
Table 6 shows that our augmentations don’t lead to a signif-
icant drop in the network’s splicing detection performance.

Synthetic CASIA
RGB-N 0.134 0.129
RGB-N + Siamese 0.134 0.125
RGB-N + JC 0.132 0.126

Table 6. Splicing F1 scores on two datasets.

6. Conclusion

We evaluate two augmentations to the RGB-N [5] net-
work that compare Rols to improve copy-move detection.
Building off [11]], we find that concatenating two Rols to
perform pairwise comparisons leads to a marked improve-
ment in copy-move detection performance and does not sig-
nificantly affect other forgery detection on our synthetic
and standard datasets. We also show that using a Siamese
Network yields a weak form of duplicate region detection,
though experiments show that with enough data and a care-
fully designed training protocol, this network could be ef-
fective.

7. Future Directions

Three immediate extensions could explore more sophis-
ticated ways to choose the correct Rol from the original-
tampered pair, different ways to combine the JC and RGB-
N networks and the application of triplet loss to our siamese
network. Additionally, we believe it would be beneficial to
have a process of incorporating global context when com-
paring Rols, as opposed to simple pairwise comparisons.
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