
Identifying Duplicate Questions with Siamese Neural Networks

Arnav Ghosh, Zhao Shen, and Brandon Kates
Cornell Data Science, Cornell University

The task of identifying questions that have the same intent has a variety of applications, including
information centralization and question redirection. We believe that deep learning techniques are
capable of performing well in this task, and use a Siamese neural network architecture to achieve
results that are comparable to state-of-the-art. As this research is still in progress, we also articulate
modifications to our model architecture that could potentially result in even better performance.

I. INTRODUCTION

Our goal is to identify duplicate questions, where such
questions are defined as having the same intent and main-
taining the property that any answer to one question
could be an acceptable answer to the other.

The most apparent applications of a high-performance
model for this task include information centralization and
question redirection in question-answer forums, where
the former results in the aggregation of existing question
threads and the latter suggests threads to users wishing
to submit a question that has already been answered be-
fore.

Our model should be able to take in two questions and
determine whether or not they are duplicates. We iden-
tified a Siamese neural network architecture as the most
intuitive manner to achieve this goal, since it processes
distinct inputs with identical networks whose outputs are
then accumulated and processed with some function to
produce a final output. In our task, the idea is to use
these twin networks on each question to produce two
question embeddings, and to then use some similarity
function to decide whether to classify them as duplicates.

FIG. 1. A Siamese neural network uses two identical networks
to process two inputs, and uses some function to unify those
outputs.

II. DATA

The dataset we use is Quora Question Pairs, a public
Kaggle dataset pulled from the popular question-answer
forum Quora. This dataset contains 404,351 pairs of
questions, each with the following attributes.

id: A unique identification tag for the ques-
tion pair (integer).

qid1: A unique identification tag for the first
question (integer).

qid2: A unique identification tag for the sec-
ond question (integer).

question1: The text representation of the
first question (string).

question2: The text representation of the
second question (string).

is duplicate: Whether or not the two ques-
tions are duplicates (0 or 1).

III. APPROACH

A. Data Preprocessing

In addition to replacing some dataset-specific charac-
ters so that we could convert the strings to the UTF-8
format, we lemmatized the data, turning words into their
root forms so that the model might be able to generalize
better and not overfit to specific tenses or word forms.

We also removed question pairs from the dataset that
contained questions that were too short or long. Over
99% of our questions had word lengths in the range of 3
to 50 (see Figure 2). Shorter sentences are nonsensical
statements such as “aaaa”, whereas longer sentences ram-
ble on about highly specific circumstances. We removed
these extreme-length question pairs to improve the gen-
eralizability of our model and stop it from fixating on
meaningless or unhelpful cases.

In addition, we augmented our data by synthesiz-
ing new question pairs from the existing entries in the
dataset. We note that questions that are identical are
naturally duplicates, so we create new data that matches
unique questions to themselves. We also note that our
network is not fully symmetric, so we also swap the order
of questions in each pair. With these two steps we more
than double the size of our dataset, and give our model a
significant boost in both performance metrics and overfit
prevention.

2

FIG. 2. A histogram of sentences based on sentence length.

1. Did Ronald\NNP Reagan\NNP have\VB a
mannerism\PRP in his speech\NN?

2. How\WRB did Ronald\NNP Reagan\NNP react\VB
to 9/11\CD?

⇓
{WRB,CD,PRP,NN}

FIG. 3. Obtaining a bag of POS tags from a question pair.

B. Baselines

We explore two baselines: a multinomial naive bayes
classifier and a linear support vector machine classifier
with L1 regularization. Both these baselines employ the
following features:

Jaccard Similarity: Each question was represented
as set of shingles of lengths one to four. We used the Jac-
card Coefficient[1], as shown below, to obtain a Jaccard
Similarity Score for the two questions.

J(S(d1), S(d2)) =
S(d1) ∩ S(d2)

S(d1) ∪ S(d2)

POS Tags of Unshared Words: Each question was
represented as a bag of part-of-speech tags of the words
contained in the question. We used the difference of these
two sets as features. POS tags were chosen instead of
the words themselves because the questions cover a wide
variety of domains and consequently, the same content
words do not feature frequently in the dataset.

C. Deep Learning

At a high level, our deep learning model is a Siamese
neural network architecture that takes in two inputs (the
questions) and runs each of them through a GRU re-
current neural network, then uses the two outputs in a
similarity function to determine whether to classify the
questions as duplicates. We use L2 regularization with a
lambda value of 0.0001 on the weights and biases of our
network.

FIG. 4. Our Siamese network architecture. GRU outputs are
concatenated and fed into a multi-layer perceptron.

After preprocessing our data, we split the questions
into individual words. We then convert each of these
words into a vector using a pretrained GloVe word
embedding model [3]. We use the 300-dimensional
Wikipedia 2014/Gigaword 5 embeddings, so each word
becomes a 300-dimensional vector. At test time, we han-
dle unknown words by assigning them the average em-
bedding over all words contained in the GloVe model.

We set the number of cells in our GRU model to exactly
the maximum sentence length that we cut out earlier
in preprocessing (50 in our case). We pad the shorter
questions with zero embeddings and mask those cells so
that they do not affect the state of the network. At
test time, we would truncate the beginnings of longer
questions, since we assume that in those longer rambling
sentences, the last words are the ones most relevant to
the question.

For each question, we feed its word embeddings into
the GRU and use the state of the network at the end of
processing each of these embeddings as our output. We
process each question with identical networks, which we
ensure by sharing weights during training.

Our similarity function of choice is a multi-layer per-
ceptron with a single hidden layer, ending in a softmax
that outputs the probability of the questions being dupli-
cates. We do this to take advantage of the ability of neu-
ral networks to discern indirect relationships (as opposed
to direct relationships such as in Euclidean similarity),
but only use one hidden layer to keep both the num-
ber of parameters and the complexity of the discerned
similarities relatively low, to reduce the probability of
overfitting.

[q1 q2 |q1− q2| q1� q2]

To input our two questions into the fully connected
network we concatenate the two sentence embeddings as
well as their element-wise product and the absolute value
of their difference. We add the latter two features in order
to help the network learn valuable features immediately.
This concatenation step is the source of asymmetry in
the network, and one of the reasons that flipping question
pairs in preprocessing is so effective. The fully connected
network outputs the probability that our questions are
duplicates.

3

(a)
t

(b)
t

FIG. 5. Validation accuracy of the SVM on the two types of
question pairs when partitioned by Jaccard Similarity.

IV. EXPERIMENTAL RESULTS

A. Baseline Results

Model Val Acc. Val F1. Optimal Parameters

Naive Bayes 0.597 0.545 --
Linear SVM 0.659 0.575 C=1.0

TABLE I. Results of the two baselines on the validation set.

We performed a grid-search to find the optimal value
of C for the SVM classifier. Across all values of C, the
weights placed on Jaccard Similarity were consistently
an order of magnitude higher than every other feature,
suggesting that the classification was primarily being per-
formed on word overlap between the two questions.

Furthermore, we observed that the classifier placed
non-zero weights on only four features: Jaccard Similar-
ity, Nouns, Verbs and Prepositions. Interestingly, neither
adjectives or adverbs were assigned non-zero weights,
contradicting previous studies that point out their useful-
ness in identifying duplicate questions, though this would
require validation on other datasets.

Fig.5 shows the distributions of questions that have
been correctly classified by the SVM classifier with re-
spect to the pairs Jaccard Similarity. In Fig.5.a, we
observe that duplicate questions that have a high Jac-
card Similarity are more likely to be correctly classified
than those with lower Jaccard Similarity. In contrast,
the sharp fall at a Jaccard Similarity of 0.6 in Fig.5.b in-
dicates that the classifier is less likely to correctly classify
non-duplicate questions that have a high Jaccard Simi-
larity.

Consequently, this dependence on the Jaccard Similar-
ity and the distribution of question pairs in the dataset
allows us to explain the contrasting performance of the
models on the two types of question pairs. Both types
of question pairs in the dataset have primarily low-to-
moderate Jaccard Similarity. Thus, the model is able to
classify non-duplicate questions fairly well because many
of them have a low enough Jaccard Similarity to be able
to be classified as non-duplicates. For duplicate ques-
tions, the model is looking for high word overlap, which
is not the case in this dataset and thus, the classification
accuracy takes a hit.

These results are consistent with the idea that our ap-
proximation of the semantic relation between two ques-
tions via content word overlap is not sufficiently nuanced
for the problem.

B. GRU Results

Model Train Acc Train F1 Val Acc Val F1

Euclidean similarity 0.938 0.950 0.748 0.759
MLP similarity 0.963 0.951 0.838 0.790

TABLE II. Training/validation set accuracy/F1 score on dif-
ferent Siamese models.

FIG. 6. Training accuracy of MLP model.

We averaged our 5-fold cross-validation results to ob-
tain our model statistics. As expected, our Euclidean
similarity architecture performs worse than our multi-
layer perceptron similarity architecture.

However, our MLP similarity architecture is still very
flawed, as illustrated by the erratic validation loss graph
(see Figure 7). We believe that this is a combination
of overfitting as well as having the potential to use loss

4

FIG. 7. Validation accuracy of MLP model.

functions that are more suited to our task such as triplet
loss, and will focus on methods to correct these issues in
the future (see section V: Future Directions).

As noted earlier, the dataset obtained doesnt catego-
rize questions by any useful metric, either by the topic,
type or the amount of paraphrasing between questions.
Thus, in order to understand the strengths and limita-
tions of our models, we evaluate their performance on a
specific partition of the validation set.

A question pair is classified as an elaboration if one
question contains the other question in its entirety with
word order preserved, and has additional words appended
and/or prepended.

Question 2︷ ︸︸ ︷
Why is poverty considered a social problem︸ ︷︷ ︸

Question 1

in Cuba

As indicated in Table.III, the models accuracy on this
set of questions pairs is lower than the overall accuracy.
Furthermore, we observe that 81% of these questions
were classified as duplicates, whereas only 51% of the
elaborations are duplicates. Because, the question pairs
only differ in a small amount of words, this suggests that
the model is not able to sufficiently capture the seman-
tic content of a given question and we would like to run
further experiments to validate this claim.

Accuracy F1-Score Precision

0.720 0.754 0.891

TABLE III. Results for the GRU Model on the 1,471 elabo-
ration question pairs in the validation set.

V. FUTURE DIRECTIONS

A. Embeddings Based on Triplet Loss

We would like to explore the triplet loss function as
described in the FaceNet paper (see Figure 8). We’d
use an architecture of three neural networks with shared

weights and combine them to generate the embeddings.
The paper uses CNN’s to generate embeddings on im-
ages, but we would use GRU’s to generate embeddings
of our sentence pairs.[2]

The main challenge with the triplet loss method is
triplet selection. The Quora dataset gives us pairs of
questions identified as duplicates, and pairs not identified
as duplicates. The triplet loss requires that we have two
vectors with the same label, and one with a different la-
bel. Therefore, the only useful data are pairs of duplicate
questions. We can then augment those pairs with a ran-
dom question from the rest of the dataset. The FaceNet
algorithm discusses different kinds of triplets, including
hard positive and hard negative which are the best for
training the network. They would be computed auto-
matically from our randomly generation sets of triplets.

Additionally, we have a different dataset than the
FaceNet paper. We want to identify if a pair of questions
are duplicates, whereas FaceNet is a multi-class classifica-
tion for images. Therefore, we require significant changes
to the algorithm in order for triplet loss to work for sen-
tences.

Anchor

Positive

Negative

Anchor
Positive

Negative
LEARNING

FIG. 8. The Triplet Loss minimizes the distance between
an anchor and a positive, both of which have the same iden-
tity, and maximizes the distance between the anchor and a
negative of a different identity.[2]

B. Data Augmentation

The dataset is imbalanced, with far more duplicate
questions than non-duplicates. Thus, it would be pru-
dent to add more non-duplicate pairs by picking two
questions from two different pairs and labelling them as
non-duplicates.

VI. RELATED WORKS

Duplicate question detection has been the topic of pre-
vious papers, including that of Addair [3], who used con-
volutional neural networks and LSTMs to retrieve em-
beddings for each question, and that of Homma et al. [4],
who used GRUs and vanilla RNNs for the embedding step
and performed much experimentation with different sim-
ilarity functions. The proposed models in these papers
were also constructed with the Siamese neural network
architecture.

5

[1] Bogdanova D. et. al. Detecting semantically equivalent
questions in online user forums. Association for Compu-
tational Linguistics, 19:123–131, 2015.

[2] Kalenichenko D. Philbin J. Schroff, F. Facenet: A unified
embedding for face recognition and clustering. Google,
2015.

[3] T. Addair. Duplicate question pair detection with deep
learning. 2016.

[4] Sy S. Homma, Y. and C. Yeh. Detecting duplicate ques-
tions with deep learning. Neural Information Processing
Systems, 30, 2016.

[5] Socher R. Manning C.D. Pennington, J. Glove: Global
vectors for word representation.

	Identifying Duplicate Questions with Siamese Neural Networks
	Abstract
	Introduction
	Data
	Approach
	Data Preprocessing
	Baselines
	Deep Learning

	Experimental Results
	Baseline Results
	GRU Results

	Future Directions
	Embeddings Based on Triplet Loss
	Data Augmentation

	Related Works
	References

